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Bifurcations under Weak Noise 
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Dynamical systems driven by Gaussian white noise share some general 
asymptotic properties in the limit of weak noise which are reminiscent of 
equilibrium thermodynamics. These properties and applications to bifurcating 
systems are discussed. 
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1. THE L IMIT  OF WEAK NOISE 

In macroscopic physics dynamical systems are, in principle, always per- 
turbed by noise, (l) but in many cases the noise is extremely weak and can 
therefore safely be neglected, giving rise to a deterministic dynamical 
system. However, there are special cases, e.g., if the system under study, 
deterministically, is at or near a bifurcation point, where even weak noise 
can have a large effect on the long-time dynamics. In such cases the limits 
of infinite time and vanishing noise intensity do not commute, and it is 
interesting to study the asymptotic effects of weak but finite noise. In this 
limit an appealing formal resemblence of the general weak-noise problem 
to equilibrium thermodynamics emerges, which is useful because it allows 
one to distinguish those properties which are common to the weak-noise 
limit and those which are present only in thermodynamic equilibrium. A 
review of the formalism with applications has recently been given in ref. 2. 

A mathematical theory of the weak-noise limit has been developed by 
Freidlin and VentselJ 3) Here we only provide the background necessary for 
the discussion of some applications. (2 6) The dynamical systems under 
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consideration are governed by the stochastic differential equations in the 
sense of Ito, 

(Iv= IU(q) + g;(q) r (1.1) 

where the q=  {q~;v= 1,...,n} are macroscopic variables, and the not 
explicitly time-dependent functions /C(q), g~(q) (v = 1,..., n, i= 1,..., n) 
describe, respectively, the drift and the diffusion of the stochastic process, 
the diffusion matrix being given by Q~"(q)= g;(q)g~(q). The summation 
convention is implied. r is Gaussian white noise with intensity ~/ 

( ~i(t) ~J(t') ) = tlYJb(t - t') (1.2) 

The Fokker-Planck equation 

OP 0 K~(q)p + t 1 0 2 
Ot Oq v 2 ~qV ~q, Q~U(q)p (1.3) 

for the conditional probability density P(ql qo, t) to observe q at time t o + t 
if q0 was realized at time to can be solved (formally, and in some cases 
explicitly) by a functional integral 

1 fq(O)=q (r q) d~] (1.41 P(qlqo, t ) :  f D/~ exp [ -  ~ jo,_,)=qoL(q(~), 

with some suitably chosen Lagrangian L(q, dl,~l) and measure of 
integration D/~. In the limit of weak noise, provided the inverse Qv, of QV~, 
exists, one has 

L(q, q, O) = Lo(q, (1) = �89 ~ - K*)(O" - K") (1.5) 

In the same limit, making the ansatz 

P ~ ( q ) ~ e x p  I -  ~ (~(q)] (1.6) 

for the time-independent solution of Eq. (1.3), that equ; ion reduces to the 
Hamilton-Jacobi equation 

H(q, O(~/aq) = 0 (1.7) 

whose Hamiltonian H(q, p) is related to Lo by the usual Legendre transfor- 
mation 

P v = 8Lo/~O ~ 
(1.81 

Lo( q, O) = ~ p~O~-- H(q, p) 
v 
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and takes the form 

H(q, p) = inv,, ,  . 2~ r v ~ + K ~ P ~  (1.9) 

The Hamiltonian exists regardless of whether Q VU has an inverse. It is 
assumed that Poo is unique and obtained from the time-dependent 
solutions (1.4) of (1.3) for t ~ oo. Then we must have (s'6) 

[ S ~~ ] ~b(q) -- inf inf Lo(q, q) dr + C(d,,.) 
(-~',) L q(- ~) ~ ~r 

(1.1o) 

where the infimum is taken over all paths connecting the attractor ~,. of the 
deterministic dynamical system with the point q, and the infimum over all 
attractors is also taken. The constants C ( ~ )  are fixed by the condition of 
continuity of the expression [ . . . ]  in the saddle on the separatrix separating 
two neighboring domains of attraction. 

The function ~b(q) has some nice properties in common with a ther- 
modynamic potential, and in fact, it is reduced to such a potential if 
Eq. (1.1) describes fluctuations in thermodynamic equilibrium. Equation 
(1.6) may therefore be viewed as a generalized Boltzmann Einstein formula. 
The drift/C'(q) which governs the deterministic dynamics satisfes a second 
law with respect to ~b(q), 

dqk(q(t)______))=iC(q) O~b(q____)) = __1 Q~(q)O(~(q)Oc)(q)<<O (1.11) 
dt OqV 2 OqV OqU 

because Eqs. (1.7), (1.9) imply that 

1 c3q~(q).rV(q ) 
KC(q) : --2 QVU(q) Oq----Y- + 

O(9( q ) 
rV(q)--~-r = 0 

(1.12) 

which, in turn, implies Eq. (1.11). Due to Eq. (1.11) the potential ~b(q) may 
serve as a Lyapunov function for the deterministic dynamics. Usually, the 
properties (1.11), (1.12) are considered to be special properties of systems 
in thermodynamic equilibrium--which is really not true, as shown by the 
generality in which they are obtained. Special to systems in thermodynamic 
equilibrium is only the time-reversal property of rV(q), which then trans- 
forms like 0 v, and of (-1/2)QV~ O~/Oq~, which then transforms like qV. 
These special symmetries are absent in the general case, which makes the 
determination of ~b(q) a nontrivial task. The lack of simple time-reversal 
symmetries in Eq. (1.12), in the general case, has important consequences 
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for the analytical properties of ~b(q). (4) While the/C(q)  are usually given as 
smooth, continuously differentiable functions, the two pieces on the 
right-hand side of Eq. (1.12) in general do not share this property. In fact, 
~b(q) as determined from Eq. (1.10) is continuous but need not be differen- 
tiable, leading to discontinuities in r~(q). In thermodynamic equilibrium, on 
the other hand, rV(q) is given by the reversible part of/C'(q), from which it 
then inherits its continuous differentiability. 

Two methods for finding ~b(q) are, in principle, available in the general 
case, and will be exemplified below: (1)the solution of the Hamilton- 
Jacobi equation (1.7) which one must construct, in nontrivial cases, as a 
power series in some suitably chosen small parameter, or (2)a direct 
evaluation of the integral formula (1.10). The first method is, of course, not 
always applicable. In particular, it breaks down in regions of configuration 
space where ~b(q) is not differentiable. This method also suffers from the 
difficulty that the HamiltomJacobi equation is only a local statement 
about ~b(q) and it is often necessary to use Eq. (1.10) in addition, in 
order to single out the globally relevant solution. The second method is, 
in principle, always applicable, but usually it has to be implemented 
numerically and does not lead to analytical solutions. 

In the following we consider two applications to systems undergoing 
bifurcations. 

2. A C O D I M E N S I O N - 2  B I F U R C A T I O N  

A general discussion of codimension-2 bifurcations is given in 
Guckenheimer and Holmes. (7) As a physical example, convection of a 
binary fluid in a porous medium has recently been studied both 
theoretically (8) and experimentally. (9) A number of theoretical studies 
concerning the influence of noise on codimension-2 bifurcation have also 
recently appeared. (1~12) Let us consider as an example a codimension-2 
bifurcation governed by the normal form (7) 

(2.1) 
1} = I~ l X "Jr- 1"~ 2 U "q- X 3 - -  X21)  -~  Q1/2 ~ ( t ) 

where r is Gaussian white noise with intensity t/. The codimension-2 
point is reached for/~1 --+ 0,/~2 -+ 0 and we wish to obtain an expression for 
~b(x, v) which is accurate in that limit. It is therefore useful to rescale (7'm 

#1,2 ---+ g2,/L1,2 

x --* ex, v "-* a2v, t --* t/g (2.2) 

Q ~ e S Q  
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and to construct ~b(x, v) as a power series in e. This strategy works (H) 
because, after the rescaling (2.2), the system (2.1) in the limit e ~ 0  
becomes a conservative system (7) weakly perturbed by dissipation and 
noise. The potential ~b(x, v) to leading order [O(e)]  in e is then only a 
function of the nearly conserved energy 

v2 # 1 x z - l x 4  (2.3) 
E = 2  2 4 

which is obtained (~1) in terms of the quadratures 

2 e 
O(E(x, v))=Qfo dE Eg2(/~)-/~2] (2.4) 

~(~  x~v(E, x) dx xl(E) 
22(E) = f~z(E) v(E, x) dx (2.5) 

Jxl(E) 

where 

v(E, x) = + ( 2 E + / ~ l x  2 + 1x4)1/2 (2.6) 

and Xl(E), x2(E) are defined by 

v(E, xl.2) = 0; xl ~< x2 (2.7) 

Corrections to ff of higher order in e may be calculated, if desired. For a 
calculation of higher order terms in the case of a Hopf  bifurcation see 
ref. 13. 

It is clear from (2.3)-(2.4) that a local minimum of ~b [i.e., an attractor 
of (2.1)] exists only for/~1 < 0 and even then the system is unstable for suf- 
ficiently large values of x or v, in fact, for E(x, v) > V0 = #2/4. The relevant 
domain of E is therefore 0 ~< E < Vo. The local minimum of ~b is at E = 0, 
i.e., at x = v = 0 ,  for /~2<0, where (Oqk/OE)e=o>O. For /~2>0 the local 
minimum of ~b, given by Eq. (2.4), moves to a finite value of E, E= Ec, 
given by /~z=)~2(Ec). The attractor is then the limit cycle v2+ I#~l x 2 -  
�89 4 = 2Ec. The value of E~ lies in the relevant domain 0 ~< E c < Vo if #2 >~ 0, 
and #2 < --/'ll/5" For/~2 = -#~/5  and /~1 < 0 one has E = Ec and the limit 
cycle disappears by a heteroclinic bifurcation, where it forms a heteroclinic 
connection of the two saddle points x =  -r m, v = 0  of the energy 
(2.3). In this way the "landscape" formed by the potential gives a clear and 
intuitive picture of all details of those bifurcations near #1 =/~2 = 0 for 
which local attractors exist, which are just the cases of physical interest. 
But in addition ~b also contains the relevant information on the effects of 
weak noise, as is clear from Eq. (1.6). Thus it can be used to calculate the 
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mean exit times from the domains of the attractors at the origin or at the 
limit cycle. (14) The noise can be considered weak as long as A~b >> q, where 
A~b is the potential barrier the system has to climb from the attractor to the 
separatrix at E =  Vo. Close to the bifurcation lines at/~1 = 0 and #2 = -�89 
two scaling regimes for the mean exit time z are predicted by the 
theory.(2,14) 

(i) ].L 2 < 0 ,  ~1  ~ - - 0 :  

1/~21 z ~ X z exp X (2.8) 

where the scaling variable X is given by 

(ii) /~1 < 0, 

2r/Q 

u2-~-Iu~[--' -0:  

I~xl~/2 ~ y-1/2 exp y 

where the scaling variable Y is given by 

y _  I~,1 ( ~ 2 -  1~,1/5) 2 

nQ Iln(l~2-hUl[/5l/I/~l)l 

(2.9) 

The conditions of weak noise in the two regimes are X>> 1, Y>> 1, respec- 
tively. 

3. NOISE IN A P E N D U L U M  UNDER AN EXTERNAL TORQUE 

As an example for the direct evaluation of the integral expression 
(1.10) we consider the stochastic dynamical system 

dZx dx 
dt 2 = -7 - ~ -  f(x) + F +  (2~,) m ~(t) (3.1) 

with the parameters ~, F, and the Gaussian white noise r of intensity q, 
which not only describes a driven stochastic pendulum, but also, e.g., noise 
in a current-driven Josephson junction. The function f ( x )  is 2n-periodic in 
x, e.g., f ( x ) =  sin x. For  a fixed value of ~ and increasing the value of IF[ 
starting from 0, the deterministic system corresponding to (3.1) with r/= 0 
passes through a regime with a single attracting fixed point for IF] < Fc(7), 
and then a coexistence regime of an attracting fixed point and a limit cycle 
for Fc(7) < IF[ < 1, and finally a regime with a single attracting limit cycle 
for IF[ > 1. 
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The integral formula (1.10) in the present case reads 

r v)= inf r v) 
(i=0,1) 

~bi(x, v) - inf |(x(0~,~(o)) = r  
(x.v) 

- dt 
d ,  (X(-- ~v),2(-- ~))e  ~, 

1 
x ~ [ 2 + ? 2 + f ( x ) - F ] 2 +  C(di) 

(3.2) 

where the C(~ )  are determined (up to a common additive constant) by the 
condition of continuity of ~b in the saddle point on the separatrix separating 
the two coexisting domains of attraction for Fc(?) < IFI < 1. Here and in 
the following the fixed-point attractor is denoted by do, the limit cycle by 
d] .  The minimizing trajectories in Eq. (3.2) satisfy an Euler-Lagrange 
equation which is of fourth order in time. Fortunately, there exist two exact 
integrals of motion, (6) the "energy" (1.9), which must vanish, and the less 
obvious time-dependent integral 

2?2 1] e ?' (3.3) 
A=- 2 + f ( x ) -  F+ 72 

which only exists in the case where the "energy" vanishes. Using the 
integral (3.3) in (3.2), we are left with 

722 

(1 + Ae-~/T) 2 
4- C(~ )  (3.4) 

where the integral is taken along a curve satisfying Eq. (3.3) and the 
required initial and final conditions. The latter are compatible, by construc- 
tion, with the zero-energy condition, but the value of A has to be adjusted 
for (3.3) to be compatible with the boundary conditions in (3.4). This is 
best done by reversing time, so that a trajectory must satisfy 

A - e  yt 
= A + e -~t 72 - f ( x )  + F (3.5) 

with the initial and final conditions 

(x(0), - 2 ( 0 ) ) =  (x, v); (x(~),  - 2 ( ~ ) ) e ~  (3.6) 

It is clear from (3.5), (3.6) that A = 0 for i=  0 and all points (x, - v )  in the 
domain of attraction of the fixed point do. The curious reversal of the sign 
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of v has its origin in the time reversal which led to (3.5). Evaluating Eqs. 
(3.4)-(3.6) for this case, one finds 

Oo(x, v) = �89 2 + g(x) - Fx + Co (3.7) 

where f ( x ) =  g'(x) and the constant Co includes C(d0) of Eq. (3.4). In 
general the constant A can be determined numerically from Eqs. (3.5) and 
(3.6), and then the integral (3.4) can also be evaluated numerically. In 
essence, this method was used in ref. 6 to compute the potential ~bl(x, v). 
Actually, a slightly different and more convenient version of this procedure 
was employed, in which, for given initial x, v, the value of the quantity 
pv(x, v)= v/[A(x, v)+ 1 ] was determined [which is, of course, equivalent 
to determining A(x, v)] such that the backward integrated dynamics (3.3) 
landed on the attractor s~l. The meaning of Pv is that of the canonically 
conjugate momentum associated with v in the Hamiltonian formulation of 
the weak-noise limit given in Section 1. Its particular choice, according to 
the prescription given, means placing the initial point on the unstable 
manifold which the attractor ~'~ develops when it is embedded in the phase 
space of the Hamiltonian dynamics. (4'6) The advantage of the use of 
pv(x, v) instead of A(x, v) consists in the fact that pv(x, v) is related to 
~bl(x, v) simply by (4'6) 

a~l(X, v)/av = pv(x, v) (3.8) 

i.e., the integral (3.4) is reduced to 

01(x, v)= pv(x, ~) d~+ C~ (3.9) 
l(x) 

where v = Vl(X) is the equation of the limit cycle d~. Equations (3.8), (3.9) 
are the familiar relations between the action and the canonical momentum. 
For a detailed discussion of the results of this method and the problem of 
taking the infimum among the potentials ~b0, ~b~ in the coexistence region of 
do and S~l we refer to ref. 6. Alternative methods for the computation of 
the barrier of ~b from the limit cycle to the saddle have been described in 
refs. 15 and 16. 

In summary, the weak-noise limit of macroscopic autonomous non- 
equilibrium systems has much in common with equilibrium thermo- 
dynamics, the essential difference being the existence of simple transfor- 
mation laws under time reversal for macroscopically defined quantities in 
thermodynamic equilibrium. The two available methods for the construc- 
tion of a generalized thermodynamic potential--a power series expansion 
in a small parameter and evaluation of a minimum principle--have been 
exemplified for a case of codimension-2 bifurcation and Brownian motion 
of a pendulum under an external torque. 
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